Resistência Mecânica em Objetos Impressos em 3D

É comum ouvirmos que peças impressas em 3D possuem baixa resistência mecânica. Mas isso realmente é verdade?

Depois de explicarmos o que é a impressão 3D e sua história, e os tipos de impressão 3D segundo a ASTM, chegou a hora de falar sobre seus produtos.

A resistência de peças impressas em impressoras 3D, principalmente FDM, varia com diversos fatores como: sentido da impressão, percentual e tipo de preenchimento, material, condições de processamento, entre outros.

Além disso, não é sempre que precisamos de uma alta resistência. Isso dependerá do seu uso como produto final.

Confira abaixo como os três primeiros fatores citados acima afetam a resistência!

Sentido da impressão

Alguns objetos impressos em 3D (principalmente em FDM) possui propriedades anisotrópicas. Em geral, elas são muito melhores no sentido X-Y do que em Z. Isso se deve ao fato de o processo ocorrer camada por camada (plano X-Y), unidas verticalmente (plano Z).

Dessa forma, a forma como o objeto será impresso é crucial para a resistência mecânica.  Assim, no caso de um objeto que tenha que suportar certa carga, seja de tração ou compressão, por exemplo, ele deve ser impresso de forma que a solicitação ocorra ao longo do sentido X-Y o qual foi impresso. Caso contrário, principalmente para objetos impressos em FDM, haverá maior chances de ocorrer delaminação e fratura quando solicitados na direção Z de impressão. A diferença na resistência pode chegar a 4 ou 5 vezes maior em X-Y.

Representação das camadas. Fonte: 3D HUB

Figura: Representação das camadas. Fonte: 3D HUB

Percentual de Preenchimento

O percentual de preenchimento é responsável pela estrutura interna de um objeto. Essa estrutura faz toda diferença para objetos que possuem maior solicitação de força.

Comparando-se objetos iguais, temos que um com 50% de preenchimento chega a ser 25% mais resistente do que um 25% preenchido. Da mesma forma, um objeto com 75% de preenchimento possui uma resistência de 10% maior que o objeto 50% preenchido.

Porcentagem de Preenchimento. Fonte: 3D HUB

Figura: Porcentagem de Preenchimento. Fonte: 3D HUB

Entretanto, tensões residuais se acumulam em objetos maciços. A elaboração de espaçamentos e bolsas de ar são importantes em um projeto para facilitar a dissipação do calor. Isso evitará o acumulo de tensões residuais e empenamento da peça, que pode ocorrer antes da impressão ser finalizada. Este empenamento pode ocorrer devido ao fato de que as bordas do objeto tendem a resfriar mais rápido do que seu interior, causando diferença na contração das partes do objeto.

Somado a estes fatos, há o custo do objeto. É fácil compreender que, para imprimir um objeto maciço, será necessário maior quantidade de material e maior tempo de impressão, quando comparado a um material com vazios ou bolsas de ar.

Geometria do preenchimento

Assim como a porcentagem de preenchimento, a geometria também afetará as propriedades mecânicas.

Dentre as formas mais comuns tem-se:

•         Retangular: Resistência mecânica em todas as direções. Possui boa velocidade de impressão.

•         Triangular ou Diagonal: Resistência mecânica na direção das paredes. Leva mais tempo para ser impresso.

•         Wiggle (Zigue-Zague): Permite que o objeto seja torcido ou comprimido. Ideal para impressão em borracha ou nylon.

•         Colmeia: Alta resistência mecânica em todas as direções. A geometria mais comum e rápida velocidade de impressão.

Figura: Geometria de Impressão. Fonte: 3D HUB

A Afinko Soluções em Polímeros pode te ajudar a desenvolver a melhor estrutura para seu material impresso. Também podemos ajudar a realizar testes para analisar a resistência mecânica do produto.

Entre em contato e solicite um orçamento: https://www.afinkopolimeros.com.br

 

Gostou da matéria?
Acesse nosso blog e confira muitas outras: https://www.afinkopolimeros.com.br/blog

 


Nós recomendamos:

3D Hub
3D Lab

Amarelou!! Entenda agora como ocorre a degradação.

Você já deve ter tido algum produto de plástico que amarelou, não?

É comum que produtos antigos feitos de plástico adquiram uma cor amarelada. Neste texto nós vamos te mostrar o por que isso ocorre.

Uma das principais características dos plásticos (polímeros) é a sua durabilidade. Em geral, eles podem durar muitos e muitos anos, chegando a mais de 200 anos até a completa degradação. E esse é um dos motivos deles serem tão úteis. Ainda por isso que devemos nos atentar ao descarte correto e buscar a reciclagem, para evitar que os plásticos fiquem pelos aterros sanitários, rios e mares.

Brinquedo sofreu degradação está amarelado e outro na sua cor original

Figura: Brinquedo amarelado e outro na sua cor original.

O que acontece para ele amarelar?

Apesar da sua longevidade, o plástico não é perfeito. Com o tempo ele pode mudar de cor, tornar-se quebradiço, empenar, dentre outros fatores. Quando esses efeitos ocorrem, podemos observar nitidamente que houve degradação na estrutura do polímero. Essa alteração faz com que o comportamento do plástico mude, de forma que ele perde sua função inicial como produto devido a não possibilidade de se prever a falha.

Falamos um pouco sobre análise de falhas aqui.

A degradação é qualquer reação química destrutiva dos polímeros, causando uma modificação irreversível nas propriedades. Ela pode ser causada por agentes físicos e/ou químicos, e por um ou mais agentes. São exemplos de agentes: exposição à luz visível, temperaturas extremas, umidade ou exposição a solventes.

A exposição aos raios UV é um dos principais motivos para a degradação e para o amarelecimento. Ela pode fazer com que os plásticos mudem de cor, rachem, quebrem ou até derretam. Em geral, essa exposição causa uma degradação de nível superficial, ocorrendo a cisão da cadeia principal do polímero. Isso faz com que possam ser formadas ligações cruzadas, a substituição ou eliminação de grupos laterais e até mesmo a reação entre eles.

Dependendo do problema e do uso pretendido do polímero, o fabricante pode adicionar aditivos. Estes são materiais adicionados como componentes auxiliares dos polímeros. A inclusão de aditivos nas formulações, ou composições, visa alguns fatores como abaixar o custo, modificar e/ou melhorar diversas propriedades, facilitar o processamento, colorir, etc. Dentre as propriedades a serem melhoradas está a degradação. Os aditivos podem dificultar a ação dos agentes físicos e/ou químicos, tornando o produto polimérico mais resistente a eles. Em geral, todos os polímeros recebem aditivos, sendo os principais os antioxidantes e auxiliadores de processamento.

É preciso esperar amarelar para saber que houve degradação?

A resposta para essa pergunta é: não.

Nós da Afinko Polímeros temos diversas técnicas de análise que podem determinar se houve ou não degradação. Uma delas é a a análise de FTIR: espectroscopia no infravermelho com transformada de Fourier. Dependo do tipo de degradação, são formados subgrupamentos químicos que são oriundos desta, e dessa forma pode-se dizer se houve ou não degradação. Entretanto, não é possível saber quantitativamente o quanto degradou.

Outros ensaios são de Envelhecimento Térmico em Estufa e Espectroscopia na Região do Ultravioleta-visível. O primeiro consiste em expor amostras em uma estufa com temperatura controlada e com circulação de ar forçada para avaliar possíveis alterações das propriedades físicas e químicas de acordo com o tempo de envelhecimento. Já o segundo permite a caracterização de grupos funcionais orgânicos, identificação de íons metálicos em solução bem como a quantificação de diversos componentes orgânicos e inorgânicos. Dessa forma, assim como o FTIR, a partir dos subgrupamentos químicos é possível determinar se houve ou não a degradação.

Esses são alguns exemplos, porém existem outros que podemos fazer.

Tem interesse em realizar alguma análise? Acesse nosso site e solicite um orçamento: https://afinkopolimeros.com.br/servicos/

Gostou da matéria?
Acesse essa e outras em nosso blog: https://afinkopolimeros.com.br/blog/

Análise de Falha: Por que o material quebrou?

Análise de falha: O que é e o porquê?

 A análise de falha é um processo extremamente investigativo, detalhado e criterioso, que tem como foco a determinação de possíveis causas de falhas de um material, sistema ou processos, através de métodos/técnicas de avaliação.

 O que é uma falha?

Uma falha é um evento indesejado que afeta diretamente a eficiência e a segurança de um projeto, processo ou sistema. Somado a isso, pode apresentar fratura ou não. Muitas vezes ocorre de forma silenciosa e inesperada, podendo comprometer diretamente o rendimento e a qualidade do produto. Além disso, podem causar danos ambientais e econômicos, colocar em risco vidas humanas, ocorrer retrabalho e perder a confiabilidade.

A determinação da causa de uma falha é fundamental para sua prevenção e correção, porém não se trata de um trabalho simples. A escolha de determinada técnica investigativa e consequente obtenção de determinado resultado é dificultada pelo fato de que a informação para quem faz a análise de falha de uma peça/produto chega de forma incompleta devido a fatores como:

  • Falha ocorrer de forma instantânea numa dada situação;
  • O histórico do processo é baseado na percepção de terceiros;
  • Discussão limitada sobre o material devido a sigilo ou segredo industrial;
Ensaio de rasgamento o material apresentou falha

Ensaio de rasgamento: material altera suas dimensões e propriedades devido à falha.

Não são apenas resultados numéricos

Uma análise de falha algumas vezes não se fecha com os resultados das técnicas analíticas, mas sim com a discussão destes resultados com as pessoas envolvidas no processo. Algumas vezes os resultados das técnicas analíticas não evidenciam possíveis causas, mas isto já elimina possibilidades dentro de um processo.

A área de análises em materiais evoluiu muito e novas técnicas analíticas vem sendo utilizadas para caracterização e análise de falha de materiais. A escolha da técnica esbarra tanto na urgência, como na disponibilidade monetária para definição ou não por uma técnica.

De forma geral o trabalho de análise de falha não é um processo fácil e imediato, depende de inúmeros fatores, mas que sem capacidade técnica e experiência de quem analisa fica muita mais difícil chegar a um resultado satisfatório e/ou conclusivo.

Está com problemas e precisa de uma ajuda com análise de falhas?
Acesse nosso site e veja as análises que realizamoshttps://afinkopolimeros.com.br/servicos/analises-de-falhas/

MEV falha por degradação química

Falha por degradação química